Print Page   |   Contact Us   |   Sign In   |   Join EPS
Blog Home All Blogs
Search all posts for:   


View all (226) posts »

France inaugurates APOLLON Laser

Posted By Administration, 15 October 2015

The summer of the International Year of Light ended brilliantly in France.

After PETAL’s achievement celebrated in mid-September near Bordeaux (see related News), the French National Center for Scientific Research (CNRS), the Atomic Energy Commission (CEA) together with Université Paris-Saclay (which includes Ecole Polytechnique, ENSTA, IOGS and Université Paris-Sud) inaugurated the APOLLON laser facility on the 29 September 2015. This inauguration took place in the presence of the French State Secretary for Higher Education and Research, Mr. Thierry Mandon, the Vice-President of Ile-de-France Regional Council, Mrs. Isabelle This Saint-Jean, together with several CNRS and CEA high-level personalities. The chairpersons of the Quantum Electronics and Optics Division and the Plasma Physics Division of the European Physical Society, Luc Bergé and Sylvie Jacquemot, also attended this important event, marking the starting point of new collaborations between the optical and plasma physics communities.

APOLLON – whose name has been inspired by the Greek God of Sun Apollo - should be the first laser in the world to deliver a power of 5 PW (petawatts, million of billions watts) in 2017. This gigantic instrument will occupy 4,000 m² in the basement of a CEA site located in the heart of the new Paris-Saclay campus. Alone the laser room measures 750 m², to which must be added two radiation-protected bunkers of 250 and 400 m² built inside 5-m-thick concrete walls. The researchers hope to confine an optical energy of 155 joules in only 15 femtoseconds (one millionth of a billionth of sec.). The first experiments should take place in 2017 while the facility will overcome the 5-PW barrier. This step will be followed by a rise in power and the facility will be opened to users in 2018, year along which 10 petawatts are expected to be reached. 

APOLLON will allow physicists to explore new “terra incognita” and unknown dynamics in laser-matter interaction when a large amount of optical energy is focused during an extremely brief time interval. Capable of supplying the highest intensity levels in the world - far above the astronomical value of 1020 W/cm2 – this exceptional laser facility will be the key for opening new worlds of physics. Among those, relativistic physics, that is to say the behavior of matter whose particles are driven by laser to nearly the speed of light, is highly promising to produce novel sources of accelerated electrons and ions toward multi-gigaelectronvolt values. From such experiments, innovative solutions could be proposed for medical imaging techniques based on protontherapy. Looking at the cosmic horizon, energetic sources of radiation and laser-accelerated particles will simulate different mechanisms related to violent astrophysical events such as supernovae, pulsars or gamma ray bursts. At the microscopic scale, the shortness of APOLLON pulses will offer the means to observe phenomena evolving over attosecond durations, i. e., over thousandths of one femtosecond, which is the characteristic duration of the rotation of an electron around an atomic core. Last but not least, APOLLON will open up unique opportunities to probe and exploit the quantum properties of the vacuum and create electron-positron pairs from an intense light beam.

A new sun is shining in Ile-de-France. And it will be shining for a long time.

Luc Bergé, EPS-QEOD Chair &
Sylvie Jacquemot, EPS-PPD Chair

Fig: Chairs of the EPS Plasma Physics Division, Sylvie Jacquemot (left) and of the EPS Quantum Electronics and Optics Division, Luc Bergé (right) attending together APOLLON Inauguration (copyright: Ecole Polytechnique).


Tags:  EPS PPD  EPS QEOD  Lasers 

Share |
Permalink | Comments (0)
Community Search
Sign In
Sign In securely